

Муниципальное бюджетное общеобразовательное учреждение Лицей «Держава»

города Обнинска

«Рассмотрено»

Руководитель методического объединения учителей математики МБОУ «Лицей «ДЕРЖАВА» г.

Протокол №

/Литвинчук С.Л. /

2024г.

«Согласовано»

Заместитель директора по УВР МБОУ «Лицей «ДЕРЖАВА»

г. Обнинск

/Ермакова Н.В. /

«Утверждаю» Директор МБОУ «Лицей «ДЕРЖАВА» г. Обнинска

Копылова О.Н./

Приказ №

2024г.

ПРОГРАММА

курса «Решение задач по физике повышенного уровня сложности»

(платные дополнительные образовательные услуги) на 2024-2025 учебный год

для 9 классов.

58 часов (2 часа в неделю)

Составитель программы: Кубышкина Татьяна Борисовна учитель физики высшей категории

Пояснительная записка

Актуальность курса

Процесс решения задач является одним из средств овладения системой научных знаний по физике. При обучении физике, задачи выступают действенным средством формирования основополагающих физических знаний и учебных умений.

Цели и задачи рабочей программы

Цель данного курса: углубить и систематизировать знания учащихся 9 классов по физике путем применения различных методов решения разнообразных задач и способствовать их профессиональному определению.

Задачи курса:

- 1. Углубление и систематизация знаний учащихся;
- 2. Усвоение учащимися общих алгоритмов решения задач;
- 3. Овладение различными методами решения задач.
- 4. Развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний;
- 5. Воспитание духа сотрудничества в процессе совместного выполнения заданий;
- 6. Применение знания по физике для объяснения явлений природы, свойств вещества, решения физических задач, самостоятельного приобретения знаний и оценки новой информации физического содержания, использование современных информационных технологий;
- 7. Использование приобретённых знаний и умений для решения практических задач, жизненных задач.

Особенности программы и ее место в образовательном процессе

Решение практических задач позволяет ученикам совершенствовать уже усвоенные знания и умения. В программе отражены все разделы физики. Необходимые теоретические сведения излагаются на современном уровне. Предусмотрено решение задач, рассматриваются различные методы их решения, даются задания и упражнения, иллюстрирующие основные технические применения изученных законов и способствующие формированию умений применять полученные теоретические знания на практике.

Программа делится на несколько разделов. Первый раздел носит теоретический характер. Школьники знакомятся с минимальными сведениями о понятии «задача», о значении задач в жизни, науке, технике, знакомятся с различными сторонами работы с задачами.

Основные методы и технологии, способы и формы работы с учащимися

При работе с учениками данного возраста, введении более сложного материала применяются элементы проблемного обучения, так как ощущение самостоятельно сделанного открытия всегда приносит чувство удовлетворения, что в свою очередь, положительно влияет на психофизическое состояние, как каждого учащегося, так и класса

в целом. Проблемное обучение в отличие от любого другого способствует не только формированию ключевых компетентностей учащихся, но и обеспечивает достижение высокого уровня умственного развития школьников, развитие у них способности к самообучению, самообразованию.

При изучении курса используются разнообразные приёмы и методы: рассказ и беседа учителя, подробное объяснение примеров решения задач, работа с разными задачниками, задачи на сравнение.

Планируемые результаты освоения курса

Личностные

- умение управлять своей познавательной деятельностью;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию;
- умение сотрудничать со сверстниками, взрослыми в образовательной, учебной и других видах деятельности;
- сформированность мировоззрения, соответствующего современному уровню развития науки;

Метапредметные

- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- определять несколько путей достижения поставленной цели;
- задавать параметры и критерии, по которым можно определить, что цель достигнута;
- сопоставлять полученный результат деятельности с поставленной заранее целью;
- критически оценивать и интерпретировать информацию с разных позиций;
- распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- искать и находить обобщенные способы решения задачи;
- приводить критические аргументы, как в отношении собственного суждения, так и в отношении действий и суждений другого человека;
- анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- развернуто, логично и точно излагать свою точку зрения с использование адекватных (устных и письменных) языковых средств;
- согласовывать позиции членов команды в процессе работы над общим продуктом/решением;
- - представлять публично результаты индивидуальной и групповой деятельности, как перед знакомой, так и перед незнакомой аудиторией;
- - воспринимать критические замечания как ресурс собственного развития;

• - точно и емко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений

Предметные

- составлять стратегию по решению задач;
- классифицировать предложенные задачи;
- проводить перекодировку условия задачи;
- определять все типы параметров, входящие в задачу;
- определять наиболее рациональный метод решения задачи;
- осознавать деятельность по решению задач;
- решать задачи, используя алгоритмическое предписание;

Ученики должны уметь:

Учащиеся должны знать основные приёмы составления задач, уметь классифицировать задачу по трём-четырём основаниям, уделять внимание последовательности действий, анализу физического явления, анализу полученного ответа.

Учащиеся должны самостоятельно выполнять следующие виды работ:

- 1. Выполнять чертежи к задаче, сделать рисунок, схему;
- 3. Использовать таблицы и справочную литературу;
- 4. Выбирать наиболее оптимальный метод решения предложенной задачи.
- 5. Составлять уравнения, используя законы и формулы;
- 6. Определять искомые величины и размерность величин.

В итоге школьники могут выйти на теоретический уровень решения задач: решение по определённому алгоритму, владение основными приёмами решения, осознание деятельности по решению задачи, самоконтроль и самооценка, моделирование физических явлений и т.д.

В процессе обучения школьники должны приобрести следующие умения:

- самоанализ знаний, умений и навыков при решении задач;
- усвоение алгоритма решения задач по различным темам и применение его на практике;
- умение строить графики в различных координатах, параметрах; умение находить различные величины по графикам;
- умение читать графические задачи и находить по графику разные величины;
- воспроизведение алгоритмов решения задач на различную тематику по памяти, умение приводить примеры задач на применение алгоритма; умение определять тематику задачи.
- свободно выступать перед аудиторией;
- отстаивать своё мнение, участвовать в дискуссии.

Учащиеся должны уметь:

- анализировать физическое явление;
- проговаривать вслух решение;

- анализировать полученный ответ;
- классифицировать предложенную задачу;
- выбирать рациональный способ решения задачи;
- решать комбинированные задачи;
- владеть различными методами решения задач: аналитическим, графическим, и т.д.;
- владеть методами самоконтроля и самооценки.

Основное содержание курса

Современный подход к решению физических задач.

Методологические основы решения физических задач. Математический аппарат при решении физических задач: геометрические образы векторных уравнений, тригонометрические тождества, комплексные числа, метод математической индукции. Использование законов сохранения и изменения энергии и импульса. Использование методологических принципов: принцип относительности, принцип симметрии, принципы простоты и толерантности. Условия задач и проверка полученных ответов.

Механика.

Кинематика материальной точки. Динамика. Законы сохранения энергии и импульса. Статика. Механика жилкостей и газов.

Строение и свойства вещества.

Свойства жидкостей и твёрдых тел. Кинетическая теория вещества.

Тепловые явления.

Процессы нагревания и охлаждения. Фазовые переходы. Уравнение теплового баланса.

Электродинамика. Оптика.

Электростатика. Цепи постоянного тока. Работа и тепловое действие тока. Магнитное поле и электромагнитная индукция. Заряженные частицы в электрических и магнитных полях. Геометрическая оптика.

Квантовая физика.

Квантовые явления. Основы физики атомного ядра. Элементарные частицы.

Список литературы:

- 1. Бендриков Г., Буховцев Б., Керженцев В., Мякишев Г. Физика. Сборник задач. М.: Айри-пресс, 2000.
- 2. Бутиков Е.И., Быков А. А., Кондратьев А. С. Физика в примерах и задачах: Учеб. пособие. 3-е изд. МЦНМО, СПб.: Петроглиф, 2008.
- 3. Бутиков Е.И., Быков А.А., Кондратьев А. С. Физика для поступающих в вузы. СПб.: Лань, 1999.
- 4. Буховцев Б. Б., Кривченков В. Д., Мякишев Г. Я., Шальнов В. П. Сборник задач по элементарной физике. М.: Наука, 1976.
- 5. Воробьев И. И., Зубков П. И. и др. Задачи по физике: Учеб. пособие / Под ред. О. Я. Савченко. СПб.: Лань, 2001.

- 6. Гольдфарб Н.И. Сборник вопросов и задач по физике. М.: Высшая школа, 1978.
- 7. Зубов В.Г., Шальнов В. П. Задачи по физике. М.: Высшая школа, 1985.
- 8. Кондратьев А.С, Уздин В.М. Физика. Сборник задач. М.: ФИЗМАТЛИТ, 2005.
- 9. Баканина Л.П., Белонучкин В.Е., Козел СМ., Мазанько И.П. Сборник задач по физике: Учеб. пособие / Под ред. С. М.Козела. М.: Наука, 1990.
- 10. Баканина Л. П. и др. Сборник задач по физике: Учеб. пособие для углубл. изуч. физики в 10-11 кл. М.: Просвещение, 1995.
- 11. Балаш В. А. Задачи по физике и методы их решения. М.: Просвещение, 1983.
- 12. Гольдфарб И. И. Сборник вопросов и задач по физике. М.: Высшая школа, 1973.
- 13. Кабардин О. Ф., Орлов В. А. Международные физические олимпиады. М.: Наука, 1985.
- 14. Черноуцан А. И. Физика. Задачи с ответами и решениями. М.: Высшая школа, 2003.

Тематическое планирование

№	Дата	Тема занятия
занятия	занятия	
по		
порядку		
		Тема 1. Современный подход к решению физических задач
		(10 ч.)
1	17.09.24	Методологические основы решения физических задач.
2	17.09	Математический аппарат при решении физических задач:
		геометрические образы векторных уравнений.
3	19.09	Математический аппарат при решении физических задач:
		тригонометрические тождества.
4	1909	Математический аппарат при решении физических задач: метод
		математической индукции.
5	24.09	Использование законов сохранения и изменения энергии и импульса.
6	24.09	Использование законов сохранения и изменения энергии и импульса.
7	26.09	Использование методологических принципов: принцип
		относительности.
8	26.09	Использование методологических принципов: принцип симметрии.
9	09.11	Использование методологических принципов: принципы простоты и
		толерантности.
10	09.11	Условия задач и проверка полученных ответов.
		Тема 2. Механика (16 ч.)
11	16.11	Кинематика материальной точки.
12	16.11	Кинематика материальной точки.
13	21.11	Кинематика материальной точки.
14	21.11	Кинематика материальной точки.
15	23.11.	Динамика.
16	23.11	Динамика.
17	07.12	Динамика.
18	07.12	Динамика.

19	14.12	Zavoui i covpanentia anapetti il intiviti ca
20	14.12	Законы сохранения энергии и импульса.
21	+	Законы сохранения энергии и импульса.
22	21.12.	Законы сохранения энергии и импульса.
	21.12	Статика.
23	28.12	Статика.
24	28.12	Статика.
25	16.01.25	Механика жидкостей и газов.
26	16.01	Механика жидкостей и газов.
	10.01	Тема 3. Строение и свойства вещества (3 ч.)
27	18.01	Свойства жидкостей и твёрдых тел.
28	18.01	Свойства жидкостей и твёрдых тел.
29	25.01.	Кинетическая теория вещества.
		Тема 4. Тепловые явления. (5 ч.)
30	25.01.	Процессы нагревания и охлаждения. Фазовые переходы.
31	01.02	Процессы нагревания и охлаждения. Фазовые переходы
32	01.02	Уравнение теплового баланса.
33	08.02	Уравнение теплового баланса.
34	08.02	Уравнение теплового баланса.
		Тема 5. Электродинамика. Оптика (18 ч.)
35	15.02	Электростатика.
36	15.02	Электростатика.
37	20.02	Электростатика.
38	20.02	Цепи постоянного тока.
39	15.03	Цепи постоянного тока.
40	15.03	Цепи постоянного тока.
41	22.03	Цепи постоянного тока.
42	22.03	Работа и тепловое действие тока.
43	29.03	Работа и тепловое действие тока.
44	29.03	Магнитное поле и электромагнитная индукция.
45	05.04	Магнитное поле и электромагнитная индукция.
46	05.04	Магнитное поле и электромагнитная индукция.
47	12.04	Заряженные частицы в электрических и магнитных полях.
48	12.04	Заряженные частицы в электрических и магнитных полях.
49	19.04	Заряженные частицы в электрических и магнитных полях.
50	19.04	Геометрическая оптика.
51	26.04	Геометрическая оптика.
52	26.04	Геометрическая оптика.
		Тема 6. Квантовая физика (6 ч.)
53	17.05.	Квантовые явления.
54	17.05.	Квантовые явления.
55	21.05	Основы физики атомного ядра.
56	21.05	Основы физики атомного ядра.
57	22.05	Элементарные частицы.
58	22.05.	Элементарные частицы.
20	44.03.	олементарные частицы.